- easy-orientable axis
- Математика: ось легкого ориентирования
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Roman surface — The Roman surface (so called because Jakob Steiner was in Rome when he thought of it) is a self intersecting mapping of the real projective plane into three dimensional space, with an unusually high degree of symmetry. The mapping is not an… … Wikipedia
Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… … Wikipedia
Polyhedron — Polyhedra redirects here. For the relational database system, see Polyhedra DBMS. For the game magazine, see Polyhedron (magazine). For the scientific journal, see Polyhedron (journal). Some Polyhedra Dodecahedron (Regular polyhedron) … Wikipedia
Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
Diffeomorphism — In mathematics, a diffeomorphism is an isomorphism in the category of smooth manifolds. It is an invertible function that maps one differentiable manifold to another, such that both the function and its inverse are smooth. The image of a… … Wikipedia
Line at infinity — Ideal line redirects here. For the ideal line in racing, see Racing line. In geometry and topology, the line at infinity is a line which is added to the real (affine) plane in order to give closure to, and remove the exceptional cases from, the… … Wikipedia
Lie group — Lie groups … Wikipedia